搜索

x
中国物理学会期刊
Chinese Physics Letters Chinese Physics B 物理学报 物理 中国物理学会期刊网
高级检索
  • 首页
  • 亮点文章
  • 期刊在线
    1. 优先出版
    2. 预出版
    3. 当期目录
    4. 过刊浏览
    5. 下载排行
    6. 高被引论文
    7. 高级检索
  • 专题
  • 作者中心
    1. 投稿须知
    2. 投稿查稿
    3. 版权协议
    4. 相关资料下载
    5. 论文关联数据汇交
    6. 稿件处理流程
    7. 常见问题
    8. 授权申请
    9. 特别约稿和绿色通道
  • 审稿中心
    1. 审稿政策
    2. 审稿常见问题
    3. 专家登录
    4. 编委登录
    5. 主编登录
    6. 编辑登录
  • 期刊简介
  • 联系我们
  • ENGLISH

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄柔性透射型超构材料吸收器

杨鹏 ,  秦晋 ,  徐进 ,  韩天成

downloadPDF
引用本文:
Citation:

超薄柔性透射型超构材料吸收器

杨鹏, 秦晋, 徐进, 韩天成

Ultrathin flexible transmission metamaterial absorber

Yang Peng, Qin Jin, Xu Jin, Han Tian-Cheng
  • 摘要
  • 图表
  • 参考文献(34)
  • 相关文章
PDF
HTML
导出引用
  • 摘要

    设计并加工了一种超薄柔性透射型吸收器, 总体厚度为0.288 mm, 可实现柔性弯曲, 容易做到与曲面目标共形. 该吸收器由三层结构组成, 底层是金属光栅, 中间为介质层, 表面单元由两条平行放置的尺寸不同的金属线组成. 仿真和实验结果表明, 对横电波在5和7 GHz的吸收分别达到97.5%和96.0%, 对横磁波在3.0―6.5 GHz都能保持90%以上的透射率. 两个吸收频点可分别独立调节, 增加了设计的灵活性. 另外, 当入射角增大到60° 时, 该吸收器的性能基本不受影响, 表现出良好的广角特性.
      关键词:
    • 超构材料吸收器 / 
    • 超薄柔性 / 
    • 双频吸收 / 
    • 高效透射 

    Abstract

    As an important branch of metamaterial-based devices, metamaterial absorber (MA) has aroused great interest and made great progress in the past several years. By manipulating the magnetic resonance and the electric resonance simultaneously, the effective impedance of MA will match the free space impedance, thus resulting in a perfect absorption of incident waves. Due to the advantages of thin thickness, high efficiency and tunable property, MA has been widely concerned in energy-harvesting and electromagnetic stealth. Since the first demonstration of MA in 2008, many MAs have been extensively studied in different regions, such as microwave frequency, THz, infrared frequency and optical frequency. At the same time, the absorber has been extended from the single-band to the dual-band, triple-band, multiple-band and broadband. In recent years, the dual-band absorber has received significant attention and has been widely studied. So far, however, most of MAs are composed of a bottom continuous metallic layer, which prevents electromagnetic waves from penetrating and makes electromagnetic waves absorbed or reflected. In this paper, an ultrathin flexible transmission absorber with a total thickness of 0.288 mm is designed and fabricated, which can be conformally integrated on an object with a curved surface. The absorber consists of three layers of structure: the bottom is a one-dimensional grating type metal line, the middle is the medium layer, and the surface metal layer is composed of two different sizes metal lines in parallel. Simulation and experimental results show that the absorptions of TE wave are 97.5% and 96.0% respectively at the two frequency points of 5 GHz and 7 GHz. The transmission of the TM wave above 90% is maintained from 3 GHz to 6.5 GHz. We also simulate the spatial electric field distribution and magnetic field distribution at two resonant frequencies, and explain the electromagnetic absorption mechanism of the proposed structure for TE wave. Secondly, when the incident angle increases to 60 degrees, the performance of the absorber is substantially unaffected, exhibiting good wide-angle characteristics. In addition, through the analysis of structural parameters, two absorption peaks of the proposed absorber can be independently adjusted, resulting in a flexible design. In conclusion, we propose both theoretically and experimentally a polarization-controlled transmission-type dual-band metamaterial absorber that can absorb the TE waves and transmit the TM wave efficiently, which has important applications in the case requiring bidirectional communication.
      Keywords:
    • metamaterial absorber / 
    • ultrathin flexibility / 
    • dual-band absorption / 
    • efficient transmission 

    作者及机构信息

      通信作者: 韩天成, tchan123@swu.edu.cn
    • 基金项目: 重庆市自然科学基金(批准号:cstc2018jcyjA0572)和国家级大学生创新创业训练计划(批准号:201810635040)资助的课题.

    Authors and contacts

      Corresponding author: Han Tian-Cheng, tchan123@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. cstc2018jcyjA0572) and the Undergraduate Science and Technology Innovation Fund, China (Grant No. 201810635040).

    文章全文 : translate this paragraph

    参考文献

    [1]

    Almoneef T S, Ramahi O M 2015 Appl. Phys. Lett. 106 153902 Google Scholar

    [2]

    Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570 Google Scholar

    [3]

    Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017 Sci. Rep. 7 40490 Google Scholar

    [4]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901 Google Scholar

    [5]

    Li W, Valentine J 2014 Nano Lett. 14 3510 Google Scholar

    [6]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802 Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802 Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402 Google Scholar

    [8]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009 Google Scholar

    [9]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151 Google Scholar

    [10]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506 Google Scholar

    [11]

    Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J. Alloys Compd. 705 262 Google Scholar

    [12]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103 Google Scholar

    [13]

    Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D: Appl. Phys. 50 135108 Google Scholar

    [14]

    张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801 Google Scholar

    Zhang Y P, Li T T, Lü H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 Google Scholar

    [15]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689 Google Scholar

    [16]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896

    [17]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett 104 207403 Google Scholar

    [18]

    Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P, Lee C 2017 ACS Photonics 4 302 Google Scholar

    [19]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett 96 251104 Google Scholar

    [20]

    Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M, Li Q 2017 Appl. Phys. Lett 110 101101 Google Scholar

    [21]

    Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys. Lett. 95 241111 Google Scholar

    [22]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104 Google Scholar

    [23]

    Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373 Google Scholar

    [24]

    Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052 Google Scholar

    [25]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945 Google Scholar

    [26]

    Chen K, Adato R, Altug H 2012 ACS Nano 6 7998 Google Scholar

    [27]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102 Google Scholar

    [28]

    Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl. Phys. Lett. 99 264101 Google Scholar

    [29]

    Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q 2014 Opt. Express 22 A335 Google Scholar

    [30]

    Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906 Google Scholar

    [31]

    Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507 Google Scholar

    [32]

    Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484 Google Scholar

    [33]

    Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557 Google Scholar

    [34]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342 Google Scholar

    施引文献

  • 图 1  (a) 超薄柔性透射型双频吸收器的效果示意图; (b)基本单元结构示意图

    Fig. 1.  (a) Schematic demonstration of the proposed ultrathin flexible transmission dual-band absorber; (b) schematic diagram of the basic unit structure.

    下载: 全尺寸图片 幻灯片

    图 2  (a) 实验装置示意图; (b)测试环境照片; (c) 加工实物照片; (d)仿真和实验结果

    Fig. 2.  (a) Schematic demonstration of experimental setup; (b) photograph of experimental setup; (c) photograph of the fabricated sample; (d) simulated and measured results.

    下载: 全尺寸图片 幻灯片

    图 3  电场分布 (a) f = 5 GHz, (b) f = 7 GHz; 磁场分布 (c) f = 5 GHz, (d) f = 7 GHz

    Fig. 3.  The electric field distributions at (a) f = 5 GHz and (b) f = 7 GHz, respectively; the magnetic field distributions at (c) f = 5 GHz and (d) f = 7 GHz, respectively.

    下载: 全尺寸图片 幻灯片

    图 4  (a) TM波随入射角度变化的透射谱, 插图为弯曲的加工样品覆盖在圆柱形物体表面; (b) TE波随入射角度变化的吸收谱

    Fig. 4.  (a) Transmission spectra for TM wave with the change of incident angle, the inset shows the curved sample covered on the surface of a cylindrical object; (b) the absorption spectra for TE wave with the change of incident angle.

    下载: 全尺寸图片 幻灯片

    图 5  (a) TE波的吸收和TM波的透射随l1的变化; (b) TE波的吸收和TM波的透射随l2的变化

    Fig. 5.  (a) The absorption of TE wave and transmission of TM wave with the change of l1; (b) the absorption of TE wave and transmission of TM wave with the change of l2.

    下载: 全尺寸图片 幻灯片

    装修网150平装修要花多少钱卧室家装图多功能装修大连市创美装饰80平米小户型简装室内一装修成县装修公司90平米的房子简装大约多少钱精装修的厨房店面装修明细外墙装修装修127平米的房子简装需要多少钱正规装修哪家好装修装潢拆除45平loft装修下来得多少钱公装 装饰如何选装修公司家装水电工程报价表明细杭州公装装修公司家装瓷砖空鼓飞日强装饰怎么样长沙装修报价鱼火锅店装修简装简装60平方需要多少钱小户型装修60平米简装30平方米美容院简装图简装地板多少钱一平米报价系统装修郴州装饰装修日式简约装修香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声汪小菲曝离婚始末卫健委通报少年有偿捐血浆16次猝死单亲妈妈陷入热恋 14岁儿子报警雅江山火三名扑火人员牺牲系谣言手机成瘾是影响睡眠质量重要因素男子被猫抓伤后确诊“猫抓病”中国拥有亿元资产的家庭达13.3万户高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了男孩8年未见母亲被告知被遗忘张家界的山上“长”满了韩国人?倪萍分享减重40斤方法许家印被限制高消费网友洛杉矶偶遇贾玲何赛飞追着代拍打小米汽车超级工厂正式揭幕男子被流浪猫绊倒 投喂者赔24万沉迷短剧的人就像掉进了杀猪盘特朗普无法缴纳4.54亿美元罚金周杰伦一审败诉网易杨倩无缘巴黎奥运专访95后高颜值猪保姆德国打算提及普京时仅用姓名西双版纳热带植物园回应蜉蝣大爆发七年后宇文玥被薅头发捞上岸房客欠租失踪 房东直发愁“重生之我在北大当嫡校长”校方回应护栏损坏小学生课间坠楼当地回应沈阳致3死车祸车主疑毒驾事业单位女子向同事水杯投不明物质路边卖淀粉肠阿姨主动出示声明书黑马情侣提车了奥巴马现身唐宁街 黑色着装引猜测老人退休金被冒领16年 金额超20万张立群任西安交通大学校长王树国卸任西安交大校长 师生送别西藏招商引资投资者子女可当地高考胖东来员工每周单休无小长假兔狲“狲大娘”因病死亡外国人感慨凌晨的中国很安全恒大被罚41.75亿到底怎么缴考生莫言也上北大硕士复试名单了专家建议不必谈骨泥色变“开封王婆”爆火:促成四五十对测试车高速逃费 小米:已补缴天水麻辣烫把捣辣椒大爷累坏了

    装修网 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化

  • [1]

    Almoneef T S, Ramahi O M 2015 Appl. Phys. Lett. 106 153902 Google Scholar

    [2]

    Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570 Google Scholar

    [3]

    Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017 Sci. Rep. 7 40490 Google Scholar

    [4]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901 Google Scholar

    [5]

    Li W, Valentine J 2014 Nano Lett. 14 3510 Google Scholar

    [6]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802 Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802 Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402 Google Scholar

    [8]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009 Google Scholar

    [9]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151 Google Scholar

    [10]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506 Google Scholar

    [11]

    Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J. Alloys Compd. 705 262 Google Scholar

    [12]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103 Google Scholar

    [13]

    Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D: Appl. Phys. 50 135108 Google Scholar

    [14]

    张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801 Google Scholar

    Zhang Y P, Li T T, Lü H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 Google Scholar

    [15]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689 Google Scholar

    [16]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896

    [17]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett 104 207403 Google Scholar

    [18]

    Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P, Lee C 2017 ACS Photonics 4 302 Google Scholar

    [19]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett 96 251104 Google Scholar

    [20]

    Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M, Li Q 2017 Appl. Phys. Lett 110 101101 Google Scholar

    [21]

    Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys. Lett. 95 241111 Google Scholar

    [22]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104 Google Scholar

    [23]

    Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373 Google Scholar

    [24]

    Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052 Google Scholar

    [25]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945 Google Scholar

    [26]

    Chen K, Adato R, Altug H 2012 ACS Nano 6 7998 Google Scholar

    [27]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102 Google Scholar

    [28]

    Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl. Phys. Lett. 99 264101 Google Scholar

    [29]

    Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q 2014 Opt. Express 22 A335 Google Scholar

    [30]

    Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906 Google Scholar

    [31]

    Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507 Google Scholar

    [32]

    Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484 Google Scholar

    [33]

    Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557 Google Scholar

    [34]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342 Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧.  基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi:  10.7498/aps.71.20220801
    [2] 高喜, 唐李光.  基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi:  10.7498/aps.70.20200975
    [3] 江孝伟, 武华.  吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi:  10.7498/aps.70.20201173
    [4] 陈旭生, 李九生.  缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器. 物理学报, 2020, 69(2): 027801. doi:  10.7498/aps.69.20191511
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨.  基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi:  10.7498/aps.68.20191216
    [6] 翟世龙, 王元博, 赵晓鹏.  基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi:  10.7498/aps.68.20181908
    [7] 杨鹏, 韩天成.  极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi:  10.7498/aps.67.20172716
    [8] 庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟.  单层高效透射型相位梯度超表面的设计及实验验证. 物理学报, 2016, 65(15): 154101. doi:  10.7498/aps.65.154101
    [9] 郭文龙, 王光明, 李海鹏, 侯海生.  单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi:  10.7498/aps.65.074101
    [10] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇.  基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi:  10.7498/aps.64.038101
    [11] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋.  宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi:  10.7498/aps.63.028103
    [12] 马岩冰, 张怀武, 李元勋.  基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi:  10.7498/aps.63.118102
    [13] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武.  基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi:  10.7498/aps.62.237801
    [14] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏.  基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi:  10.7498/aps.62.104102
    [15] 刘亚红, 方石磊, 顾帅, 赵晓鹏.  多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi:  10.7498/aps.62.134102
    [16] 苏斌, 龚伯仪, 赵晓鹏.  树叶状红外频段完美吸收器的仿真设计. 物理学报, 2012, 61(14): 144203. doi:  10.7498/aps.61.144203
    [17] 沈晓鹏, 崔铁军, 叶建祥.  基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi:  10.7498/aps.61.058101
    [18] 樊京, 蔡广宇.  一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi:  10.7498/aps.59.6084
    [19] 张燕萍, 赵晓鹏, 保石, 罗春荣.  基于阻抗匹配条件的树枝状超材料吸收器. 物理学报, 2010, 59(9): 6078-6083. doi:  10.7498/aps.59.6078
    [20] 保石, 罗春荣, 张燕萍, 赵晓鹏.  基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi:  10.7498/aps.59.3187
目录
  • 第68卷,第8期 - 2019年04月20日
计量
  • 文章访问数:  6052
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-02-24
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回

装修网150平装修要花多少钱卧室家装图多功能装修大连市创美装饰80平米小户型简装室内一装修成县装修公司90平米的房子简装大约多少钱精装修的厨房店面装修明细外墙装修装修127平米的房子简装需要多少钱正规装修哪家好装修装潢拆除45平loft装修下来得多少钱公装 装饰如何选装修公司家装水电工程报价表明细杭州公装装修公司家装瓷砖空鼓飞日强装饰怎么样长沙装修报价鱼火锅店装修简装简装60平方需要多少钱小户型装修60平米简装30平方米美容院简装图简装地板多少钱一平米报价系统装修郴州装饰装修日式简约装修香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声汪小菲曝离婚始末卫健委通报少年有偿捐血浆16次猝死单亲妈妈陷入热恋 14岁儿子报警雅江山火三名扑火人员牺牲系谣言手机成瘾是影响睡眠质量重要因素男子被猫抓伤后确诊“猫抓病”中国拥有亿元资产的家庭达13.3万户高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了男孩8年未见母亲被告知被遗忘张家界的山上“长”满了韩国人?倪萍分享减重40斤方法许家印被限制高消费网友洛杉矶偶遇贾玲何赛飞追着代拍打小米汽车超级工厂正式揭幕男子被流浪猫绊倒 投喂者赔24万沉迷短剧的人就像掉进了杀猪盘特朗普无法缴纳4.54亿美元罚金周杰伦一审败诉网易杨倩无缘巴黎奥运专访95后高颜值猪保姆德国打算提及普京时仅用姓名西双版纳热带植物园回应蜉蝣大爆发七年后宇文玥被薅头发捞上岸房客欠租失踪 房东直发愁“重生之我在北大当嫡校长”校方回应护栏损坏小学生课间坠楼当地回应沈阳致3死车祸车主疑毒驾事业单位女子向同事水杯投不明物质路边卖淀粉肠阿姨主动出示声明书黑马情侣提车了奥巴马现身唐宁街 黑色着装引猜测老人退休金被冒领16年 金额超20万张立群任西安交通大学校长王树国卸任西安交大校长 师生送别西藏招商引资投资者子女可当地高考胖东来员工每周单休无小长假兔狲“狲大娘”因病死亡外国人感慨凌晨的中国很安全恒大被罚41.75亿到底怎么缴考生莫言也上北大硕士复试名单了专家建议不必谈骨泥色变“开封王婆”爆火:促成四五十对测试车高速逃费 小米:已补缴天水麻辣烫把捣辣椒大爷累坏了

装修网 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化